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The ability to probe specific chemical sites in complex systems
would make X-ray spectroscopy a far more versatile spectroscopic
tool. In vibrational and magnetic resonance spectroscopies
isotopic substitution is commonly employed to allow characteriza-

tion of particular species. Except in a few special cases, such as

gas-phase spectra of light elements, isotope effects are too smal
to be observed in X-ray absorption spectra. An alternative
approach is to examine the X-ray emission that results after
electron capture by a radioactive isotdgeéontrolled introduction

of electron-capture isotopes could result in specific labeling of

chemically distinct sites. In this paper, we show that high-
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Figure 18 The measuremeritsvere done at NSLS beamline
X-25% and SSRL beamline 10t2using a crystal array spec-
trometert?® The Mn metal spectrum exhibits afiK; peak at
6490.6 eV, and it has a broad, structureless tail extendi2g
eV to lower energy. The MnO spectrum has g, Kpeak shifted
1.4 eV to higher energy, and g5Kmaximum at 6477 eV. Similar
spectra have been reported for other Mn(Il) compléxBse large
Kp13—Kp' splitting for Mn(ll) is attributed to a strong 3i3d
exchange interaction for high-spin Bohaterials®
The5Fe metal K capture spectrum resembles that of the X-ray

excited Mn foil, and we find that the & ; peaks are located at
the same energy, in contrast to a previous report that found a 0.6
eV shift!* The capture spectrum/X s peak is measurably sharper
(fwhm =~ 3.0 vs 3.6 eV). One essential difference between the
two modes of excitation involves the effect of the core hole on
the valence electron distribution. Upon X-ray excitation of 8 3d
metal complex, the presence of a core hole lowers the energy of
the metal valence orbitals. The intermediate state can be expressed
as 143N and an appreciable fraction of 2BsMN*IL, where L
represents a ligand hole. The!3d'*lL component gives rise to

dditional fluorescence transitions which broaden the X-ray

pectrum. In contrast, after K-capture the 1s vacancy and the lower
nuclear charge approximately cancel, the intermediate electronic
configuration remains primarily 33dY, and the result is a sharper
spectrum.

It has been suggested that fewer multielectron excitations occur

resolution electron capture fluorescence spectra can be obtainedluring K-capture as opposed to X-ray excitati®é®ianconi and
on a reasonable time scale. Chemical shifts in these spectra Caﬁo-workersﬁ have documented 2-electron excitations in Mn
be used to identify elemental spin states, oxidation states, andcomplexes? and fluorescence from these channels would be

even the types of neighboring atoms.

expected at different energies from the norma# Keatures.

In the electron-capture process an inner shell electron reacts

with a nuclear proton to yield a neutron and a neutrino
pt+e —n+v

For an element with atomic numb&; the 1s vacancy that is
produced by K-capture is similar to that created in K-edge X-ray
absorption, except that the nucleus now has ch@rgel. Just

as with X-ray excited emission, the core hole is subsequently filled
by a higher level electron, and the extra energy is released by
emission of an Auger electron or X-ray fluorescence. X-ray
fluorescence results from 2p- 1s transitions, while g X-ray
fluorescence results when the 1s core hole is filled from orbitals
with 3p or 4p character.

Kp X-ray fluorescence is often split by a 38d exchange
interaction into a strong By s region and a weaker K satellite?
Chemical shifts in Mn I8, 3 lines* have been used to record site-
selective EXAFS of different Mn oxidation states in mixed
valence complexésnd to identify the mixtures of Mn oxidation
states in photosystem IThe Kg, s region has also been shown
to shift with oxidation staté.

K-capture spectra foPFe metal and°Fe;0; are compared with
X-ray excited K5 emission spectra for Mn metal and MnO in
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Figure 1. Comparison of X-ray excited and K-capturegs kemission | , |

spectra. Top to bottom: (a) X-ray excitegBKs spectra for MnO (blue I:nergg.-' El:"'r']

line) vs Mn metal (red dashes); (b) K-capturg Kpectra for">Fe,O3 Figure 2. Valence band g emission spectra. Top to bottom: (a) X-ray
(blue line) and Fe metal (red dashes); (c) a ligand field multiplet simulation excited K3, and K" spectra for MnO (blue line) vs Mn metal (red
with 10Dg= 2.4 eV*# dashes); (b) K-capturefk s and K3'" spectra foP°Fe,03 (blue line) and

Fe metal (red dashes); (c) a fit of the background-subtracfed tegion
Reduction or elimination of multielectron excitations may also With 4 Gaussians.

be a factor in the narrower line deths. _ the Kp, 5 feature which can be fit with 2 Gaussians separated by
The K-capture 1§ spectrum for*Fe,0s is also sharper than 5 5" gy, we assign this structure to 3e-ls quadrupole
that of the X-ray excited analogue, and thgiK peak shows a  ransitions. The 2.2 eV splitting is consistent with the 10Dq value
1.5 eV shift to higher energy frorffFe metal. The K. peak used in the simulation and with-i splittings observed in F©;
has a weak shoulder on the low-energy side, and there is a cleapnotoelectron spectfd.Finally, at~22 eV below the emission
Kf' feature at about 17 eV lower energy. These features are yhreshold, the oxide spectra exhibigKfeatures that correspond
qualltatlvely_ repro_duce_d by a ligand erLd multiplet simulation ;4 oxygen 2s [i(0)] — Mn 1s “crossover” transitionslt is clear
for a & configuration with 10Dg= 2.4 eV To our knowledge,  that the K-capture spectrum reveals a wealth of information about
this is the first observation of significant chemical shifts and iy valence energy levels in an inorganic complex.
spectral |nten5|t'y changes in K capture spectra. The strength and |, conclusion, we have demonstrated for the first time the
energy of the I§" feature suggests that on the femtosecond time gjgnificant chemical sensitivity of K-capturefspectra. On the
scale of this experiment, the new YL1¥Mn ion maintains a high-  pagjs of known fluorescence chemical shifts, this technique shows
spin d valence configuration after K-capture. n potential for characterization of oxidation statespin stateg;?s
Figure 2 compares the higher energy range containing e K 514 even ligand tygdor specific sites in heterogeneous samples.
and 532,5 features. The latter region h_as been assigned to dipole gacause hard X-rays are used, K-capture methods could be
transitions from molecular orbitals wnt]zosome Mn 4p character ggpecially valuable for chemical characterization of surfaces under
and to 3d— 1s quadrupole transitiort.?° Both oxide spectra  caaiytically relevant conditions. When the biochemistry permits,
show structure in the Bo s region, and the major features can be  |53peling of individual metal sites in multinuclear enzymes might
fit with 2 Gaussians separated b8 eV (Figure 2). Inamolecular 155 prove useful. Finally, K-capture spectroscopy should be a
orbital scheme for octahedral complexelzs, the ligand p orbitals sefy] probe of valence electronic structure, with less core hole
transform with £, tag, t1,, and g, charactef! The dipole operator  jnfluence than conventional X-ray emission.
transforms as;t,%? and there are twqtsymmetry ligand orbitals,
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